

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science; Bachelor of Science in Applied Mathematics and Statistics			
QUALIFICATION CODE:	07BOSC; 07BSAM	LEVEL:	5
COURSE CODE:	CLS502S	COURSE CODE:	CALCULUS 1
SESSION:	NOVEMBER 2022	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	DR. DSI IIYAMBO
MODERATOR:	DR. N CHERE

INSTRUCTIONS

- 1. Attempt all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1.

The functions f, g and h are defined by, $f(x) = \frac{2x+1}{\sqrt{x^2+5x+4}}$, $g(x) = x^2+3$ and h(x) = 2x+a.

- a) Find the domain of f. [6]
- b) Given that $(g \circ h)(x) = 4x^2 8x + 7$, where $x \neq 0$, calculate the value of a. [5]

Question 2.

2.1 Find the following limits, if they exist.

a)
$$\lim_{h \to 0} \frac{\sqrt{4+h}-2}{h}$$
. [7]

b)
$$\lim_{x \to 2^{-}} \frac{x^2 - 4}{|x - 2|}$$
 [6]

c)
$$\lim_{x \to 0^+} (e^x + x)^{\frac{1}{x}}$$
 [8]

d)
$$\lim_{x \to 3} \frac{1}{(3-x)^2}$$
. [4]

2.2 Using the Precise definition (the $\varepsilon - \delta$ method), prove that $\lim_{x \to -3} (14 - 5x) = 29$. [9]

Question 3.

- a) Use the definition (first principle) to find the derivative of $f(x) = \sqrt{x+1}$. [10]
- b) Find the equation of the tangent line to the graph of f at the point where x = 3. [5]
- c) Find g'(x) for each of the following functions.

(i)
$$g(x) = \cos^2(\cos x)$$
 [5]

$$(ii) g(x) = 3^x e^x$$

Question 4.

Consider the function $f(x) = \begin{cases} x - m & \text{if } x < 3; \\ 1 - mx & \text{if } x \ge 3. \end{cases}$

- a) Find the value of m for which f is a continuous function at x = 3. [9]
- b) With the value of m you found in a), is f differentiable at x = 3 or not? Justify your answer.

[5]

Question 5.

Let $f(x) = x^{\frac{1}{3}}(2x+7)$ and $g(x) = 2x - 3x^{\frac{2}{3}}$.

- a) Find the intervals on which f is increasing and on which it is decreasing, and hence state the local extreme values of f. If you answer is not a whole number, round it correct to 2 decimal places. [10]
- b) Find the intervals on which the graph of y = g(x) is concave upwards and on which it is concave downwards. [7]

END OF EXAMINATION QUESTION PAPER